

WHY GO ANYWHERE?

EARTH

24 hrs

148.9 MILLION km²

DIAMETER12,756 km / 7,926 miAVERAGE DISTANCE FROM SUN150,000,000 km / 93,000,0TEMPERATURE RANGE-88C TO 58C / -126F TO 13ATMOSPHERIC COMPOSITION78% N₂, 21% O₂, 1% OTHERFORCE OF GRAVITY (WEIGHT)100 LBS ON EARTH

DAY LENGTH

LAND MASS

PEOPLE 7 BILLION

MARS

6,792 km / 4,220 mi

1,000 mi	229,000,000 km / 142,000,000 mi
138F	-140C TO 30C / -285F TO 88F
IER	96% CO ₂ , <2% Ar,<2% N ₂ , <1% Other
	38 lbs ON MARS (62.5% LESS GRAVITY)
	24 hrs 40 min
	144.8 MILLION km ² (97% OF EARTH)
	0

FROM EARLY EXPLORATION TO A SELF-SUSTAINING CITY ON MARS

COST OF TRIP TO MARS

INFINITE MONEY

USING TRADITIONAL METHODS

\$10 BILLION / PERSON

CAN AFFORD TO GO

COST OF TRIP TO MARS

COST OF TRIP TO MARS

MEDIAN COST OF A HOUSE IN THE UNITED STATES

IMPROVING COST PER TON TO MARS BY FIVE MILLION PERCENT

FULL REUSABILITY

REFILLING IN ORBIT

PROPELLANT PRODUCTION ON MARS

RIGHT PROPELLANT

FULL REUSABILITY

To make Mars trips possible on a large-enough scale to create a self-sustaining city, full reusability is essential

Boeing 737

Price

Passenger Capability Cost/Person - Single Use Cost/Person - Reusable Cost of Fuel / Person \$90M
180 people
\$500,000
\$43 (LA to Las Vegas)
\$10

REFILLING IN ORBIT

Not refilling in orbit would require a 3-stage vehicle at 5-10x the size and cost

Spreading the required lift capacity across multiple launches substantially reduces development costs and compresses schedule

Combined with reusability, refilling makes performance shortfalls an incremental rather than exponential cost increase

PROPELLANT ON MARS

Allows reusability of the ship and enables people to return to Earth easily

- Leverages resources readily available on Mars
- Bringing return propellant requires approximately 5 times as much mass departing Earth

RIGHT PROPELLANT

VEHICLE SIZE		
COST OF PROP		
REUSABILITY		
MARS PROPELLANT PRODUCTION	×	
PROPELLANT TRANSFER		

- GOOD
- OK OK
- BAD
- × VERY BAD

/O2H2/O2CH4/O2NEHYDROGEN/OXYGENDEEP-CRYO METHALOX

FULL REUSABILITY

REFILLING IN ORBIT

PROPELLANT PRODUCTION ON MARS

RIGHT PROPELLANT

SYSTEM ARCHITECTURE

EARTH

TARGETED REUSE PER VEHICLE

- 1,000 uses per booster
- 100 per tanker
- 12 uses per ship

MARS

VEHICLE DESIGN AND PERFORMANCE

Carbon-fiber primary structure Densified $CH_4/O2$ propellant Autogenous pressurization

VEHICLES BY PERFORMANCE

VEHICLES BY PERFORMANCE

	UKN V RA	110
3,03	9 3.5	
35	3.6	
3,57	9 3.6	
111	1.1	
10	1.2	
135	4.1	
_		
	3,03 35 3,57 111 10 135 _	3,039 3.5 35 3.6 3,579 3.6 111 1.1 10 1.2 135 4.1 - -

RAPTOR ENGINE

Cycle	Full-flow sta
Oxidizer	Subcooled lic
Fuel	Subcooled lic
Chamber Pressure	300 bar
Throttle Capability	20% to 100%

Full-flow staged combustion Subcooled liquid oxygen Subcooled liquid methane 300 bar 20% to 100% thrust

Sea-Level Nozzle

Expansion Ratio: 40 Thrust (SL): 3,050 kN Isp (SL): 334 s

Vacuum Nozzle

Expansion Ratio: 200 Thrust: 3,500 kN Isp: 382 s

ROCKET BOOSTER

- Leng
- Diam
- Dry
- Prop
- Rapt
- Sea
- Vacu

jth	77.5 m
neter	12 m
Mass	275 t
ellant Mass	6,700 t
or Engines	42
Level Thrust	128 MN
um Thrust	138 MN

Booster accelerates ship to staging velocity, traveling 8,650 km/h (5,375 mph) at separation

Booster returns to landing site, using 7% of total booster prop load for boostback burn and landing

Grid fins guide rocket back through atmosphere to precision landing

Engine configuration

Outer ring: 21 Inner ring: 14 Center cluster: 7

Outer engines fixed in place Only center cluster gimbals

INTERPLANETARY SPACESHIP

Len Max Rap

Vac

Pro

Dry

Car

Car

Long term goal of 100+ passengers/ship

igth	49.5 m
x Diameter	17 m
otor Engines	3 Sea-Level - 361s Isp
	6 Vacuum - 382s Isp
uum Thrust	31 MN
pellant Mass	Ship: 1,950 t
	Tanker: 2,500 t
Mass	Ship: 150 t
	Tanker: 90 t
go/Prop to LEO	Ship: 300 t
	Tanker: 380 t
go to Mars	450 t (with transfer on orbit

SHIP CAPACITY WITH FULL TANKS

EARTH-MARS TRANSIT TIME (DAYS) BY MISSION OPPORTUNITY

		10	
YEAR	TRIP TIME (d)		
2020	90		
2022	120	8	
2024	140		
2027	150		
2029	140	n/s)	
2031	110	۲ (kr	
2033	90	BILIT P	
2035	80	CAPA	
2037	100	ΓA-V	
AVERAGE	115	- Э Д С 2	

0

TMI DELTA V: 6 km/s Mars Entry Velocity: 8.5 km/s

From interplanetary space, the ship enters the atmosphere, either capturing into orbit or proceeding directly to landing

Aerodynamic forces provide the majority of the deceleration, then 3 center Raptor engines perform the final landing burn

Using its aerodynamic lift capability and advanced heat shield materials, the ship can decelerate from entry velocities in excess of 8.5 km/s at Mars and 12.5 km/s at Earth

G-forces (Earth-referenced) during entry are approximately 4-6 g's at Mars and 2-3 g's at Earth

Heating is within the capabilities of the PICA-family of heat shield materials used on our Dragon spacecraft

PICA 3.0 advancements for Dragon 2 enhance our ability to use the heat shield many times with minimal maintenance

PROPELLANT PLANT

First ship will have small propellant plant, which will be expanded over time

Effectively unlimited supplies of carbon dioxide and water on Mars 5 million cubic km ice 25 trillion metric tons CO2

COSTS

With full reuse, our overall architecture enables significant reduction in cost to Mars

	BOOSTER	TANKER
FABRICATION COST	\$230M	\$130M
LIFETIME LAUNCHES	1,000	100
LAUNCHES PER MARS TRIP	6	5
AVERAGE MAINTENANCE COST PER USE	\$0.2M	\$0.5M
TOTAL COST PER ONE MARS TRIP (Amortization, Propellant, Maintenance)	\$11M	\$8M
Cost Of Propellant: \$168/t	Sum Of Costs: \$62 M	
Launch Site Costs: \$200,000/launch	Cargo Delivered: 450 T	
Discount Rate: 5%	Cost/ton to Mars: <\$140,0	

FUNDING

Steal Underpants Launch Satellites Send Cargo and Astronauts to ISS Kickstarter Profit

TIMELINES

2006

First Flight attempt, NASA cargo transport partnership

2008

Falcon 1, 0.5 ton to Low Earth Orbit (LEO), fully expendable. First NASA cargo contract

2010

Falcon 9 v1.0, 10 tons to LEO, expendable. Dragon spacecraft to orbit and back

2012

Dragon spacecraft delivers and returns cargo from space station

2013

Grasshopper test rig demonstrates vertical take-off and landing

2014

First orbital booster to return from space for ocean landing. Falcon 9 v1.1, 13 tons to LEO, expendable

2015

First orbital booster to return from space and land on land. Upgraded Falcon 9, 22.8 tons to LEO, expendable

2016 First droneship landing

for orbital boosters

FUTURE

LAUNCH WINDOW TO MARS

RED DRAGON

Mission Objectives

Learn how to transport and land large payloads on Mars Identify and characterize potential resources such as water Characterize potential landing sites, including identifying surface hazards Demonstrate key surface capabilities on Mars

RAPTOR FIRING

CARBON FIBER TANK

BEYOND MARS

JUPITER

EUROPA

Notes a construction of the

and the state of the

ins a first find the

SATURN

